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ABSTRACT

In this work, inverse problems for singular Sturm-Liouville operators at
the finite interval are studied. In this study, we show the spectral charac-
teristics and prove the uniqueness theorem for the solution of the inverse
problem. Finally, we give an applied example and use the numerical
technique to obtain the approximate solution of the problem.
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1. Introduction

Inverse problems for differential equations with singularities inside an in-
terval are important in mathematics and its applications. A wide class of
differential equations with turning points can be reduced to equations with
singularities (see Neamaty and Mosazadeh (2011)). Indefinite boundary value
problems with a continuous weight function that has several zeros were studied
in Eberhard et al. (2001). Furthermore, a wide class of differential equations
with Bessel-type singularities and perturbations can be reduced to differential
equations having turning points. We can see singular differential equations in
various problems of natural sciences like geophysical models of the earth’s crust
and an embankment (see for example Anderssen (1997)).

In this paper, we consider the indefinite Sturm-Liouville problem

− y′′ +
( 3

4

(x−H)2
+

−1
2H

x−H
+ q(x)

)
y = λy, h < x < H, (1)

U(y) := y′(h)− βy(h) = 0, V (y) := y(H) = 0, (2)

for β = H
2h(H−h) . Here the real function q(x) belongs to L2(h,H) and h, H are

positive real numbers. Also λ = ρ2 is a spectral parameter.

This paper proposes and tests an extension of the technique studied in
Amirov and Topsakal (2008) for obtaining the solution of the direct Sturm-
Liouville problem. Similarly singular Sturm-Liouville problems of the first and
second order have been studied by some researchers (see Koyunbakan (2009),
Koyunbakan and Bulut (2005), Neamaty and Mosazadeh (2011), Topsakal and
Amirov (2010) and Yurko (1997)).

For example, in the article Topsakal and Amirov (2010), the authors con-
sidered the following Sturm-Liouville problem with a Coulomb potential

−y′′ +
(
C

x
+ q(x)

)
y = λy, 0 < x ≤ π,

y(0) = y(π) = 0,
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along with the jump condition

y(m)(d+ 0) = a(−1)my(m)(d− 0), m = 0, 1,

wherein the real function q(x) belongs to L2(0, π) and a ∈ R+, a 6= 1, d ∈ (π2 , π).

In this paper, by taking the changes of variables y1(x) = y(x) and y2(x) =
y′(x) − u(x)y(x) for u(x) = Clnx, the authors transform the equation to a
system and then get a solution to it. In the article Yurko (1997), singular
Sturm-Liouville problems of Bessel-type,

−y′′ +
(

v0

(x− x0)2
+ q(x)

)
y = λy, 0 ≤ x ≤ T,

y(0) = y(T ) = 0.

have been investigated. It has been assumed that v0 is a complex number and
x0 ∈ (0, T ) for a real number T .

Direct and inverse problems for the classical Sturm-Liouville operators with-
out singularities have been studied in Eberhard et al. (1958) and Naimark
(1967). The inverse problem is a problem which studies a method of the re-
construction of operators by some data. This problem was first surveyed by
Ambartsumyan in 1929 (see Ambartsumyan (1929)). Since 1946, a number of
authors like Borg, Levinson and Levitan has studied the inverse problem in
different cases (see Borg (1945), Levinson (1949) and Levitan (1978)). Later
the inverse problems having different conditions were surveyed in Freiling and
Yurko (2001), Levitan (1987), Naimark (1967), Neamaty and Khalili (2015),
Topsakal and Amirov (2010) and Yurko (1997).

Inverse problems for differential operators without singularities have been
studied in McLaughlin (1986). The presence of the singularity in these problems
makes essential difficulties in the investigation of the inverse problem. Inverse
problems for the Sturm-Liouville equation with singularities of a second order
have been studied by authors like Koyunbakan and Yurko (see Koyunbakan
(2005) and Yurko (1997)). In other works, singular Sturm-Liouville operators
of a first order have been studied by different techniques in obtaining the so-
lution of the direct problem (see Amirov and Topsakal (2008) and Topsakal
and Amirov (2010)). The novelty of this paper is to study the singular Sturm-
Liouville operator of the first and second order together. In this paper, we will
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apply the method used in Amirov and Topsakal (2008) to obtain the solution
of the direct problem.

Note that similar problems for the Sturm-Liouville operator have been stud-
ied in Neamaty and Mosazadeh (2011), Topsakal and Amirov (2010) and Yurko
(1997). Here we investigate the inverse problem of recovering equation (1) un-
der the boundary conditions (2) from the given Weyl function. We first present
properties of the spectrum. Then we introduce the so-called Weyl function
which is a generalization of the notion of the Weyl function for the classical
Sturm-Liouville operators.

In this work, to prove the uniqueness theorem, the Weyl function for the
considered operator has been defined. In Sec. 2, we determine the asymptotic
form of the solutions of (1) and establish the Weyl function. In Sec. 3, the
uniqueness theorem for the solution of the inverse problem has been proved.
Finally, in Sec. 4, we give an example about the shaping of the singular Sturm-
Liouville equation in a natural phenomenon and take a numerical technique for
obtaining it’s solution. We note that throughout the whole paper, we will call
the boundary value problem (1)-(2) the so-called BVP(L).

2. Spectral Data Weyl function

At first taking the method presented in Amirov and Topsakal (2008), we
get the solution of the Eq. (1). For this purpose, we consider y1(x) = y(x) and
y2(x) = (Γy)(x) = y′(x)− u(x)y(x) for u(x) = 3

4 (H − x)− 1
2H ln(H − x), and

we have the equation (1) to the form

`(y) := −
(
(Γy)(x)

)′ − u(x)(Γy)(x)− u2(x)y(x) + q(x)y(x) = λy(x).

(3)

So Eq. (3) can be reduced to
uy1 + y2 = y′1,(
−λ− u2 + q(x)

)
y1 − uy2 = y′2,

(4)

with the boundary conditions

U(y1) := y′1(h)− βy1(h) = 0, V (y1) := y1(H) = 0. (5)
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The matrix form of the system (4) is writing in the form(
y1

y2

)′
=

(
u 1

−λ− u2 + q −u

)(
y1

y2

)
·

By regarding to Naimark (1967), the system (4) has only one solution sat-
isfying the initial conditions y1(ξ) = ν1 and y2(ξ) = ν2 for each ξ ∈ (h,H),
ν = (ν1, ν2)T ∈ C2, especially y1(h) = 1 and y2(h) = iρ.

Definition 1 (Amirov and Topsakal (2008)). The first component of the
solution of (4) which satisfies the initial conditions y1(ξ) = ν1 and y2(ξ) = ν2

is called the solution of (1) which satisfies the same initial conditions.

Let us denote a solution of the system (4) in the case q(x) = 0 and C = 0,
i.e., 

y′1 − y2 = 0,

y′2 + λy1 = 0,

(6)

for the differential equation

y′′ + λy = 0, (7)

by
(
y01

y02

)
(x, λ) together with the initial condition

(
y01

y02

)
(h, λ) =

(
1

iρ

)
.

The solution of the system (6) satisfying the initial condition
(
y01

y02

)
(h, λ) =(

1

iρ

)
can be written as

(
y01

y02

)
(x, λ) =

(
eiρ(x−h)

iρeiρ(x−h)

)
. (8)

By the successive approximations method (see Freiling and Yurko (2001)
and Marchenko (1986)), from Amirov and Topsakal (2008) we have the follow-
ing theorem.

Theorem 1. The system (4) together with the initial condition
(
y1

y2

)
(h, λ) =
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1

iρ

)
has the following integral solution:

y1(x, λ) = y01(x, λ) +

∫ x−h

−x+h

K11(x, s)y01(s, λ)ds, (9)

y2(x, λ) = y02(x, λ) + b(x)y01(x, λ)

+

∫ x−h

−x+h

K21(x, s)y01(s, λ)ds+

∫ x−h

−x+h

K22(x, s)y02(s, λ)ds,

(10)

where

b(x) =
−1

2

∫ x−h

0

[u2(s)− q(s)] exp

(
−1

2

∫ x−h

s

u(r)dr

)
ds,

K11(x, x) =
1

2
u(x),

K21(x, x) = b′(x)− 1

2

∫ x−h

0

[u2(s)− q(s)]K11(s, s)ds

−1

2

∫ x−h

0

u(s)K21(s, s)ds, K22(x, x) =
−1

2
(u(x) + 2b(x)).

In the sequel, we consider the properties of the spectrum of L. We also
consider the BVP(L0) for the differential equation (7) together with boundary
conditions (2).

Let the functions ϕ(x, λ) and ψ(x, λ) be the solutions of Eq. (3) satisfying
the conditions ϕ(h, λ) = 1, (Γϕ)(h, λ) = β−α for α = 3

4 (H−h)− 1
2H ln(H−h),

ψ(H,λ) = 0 and (Γψ)(H,λ) = 1.

It is trivial that ϕ0(x, λ) will be a solution of Eq. (7) with the same condi-
tions. Therefore the solution ϕ0(x, λ) has the form

ϕ0(x, λ) = cosρ(x− h) +
βsinρ(x− h)

ρ
. (11)

Now, we define the characteristic function of L. Denote

∆(λ) =< ψ(x, λ), ϕ(x, λ) >, (12)
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where < y(x), z(x) >:= y(x)(Γz)(x)−(Γy)(x)z(x), and is called the Wronskian
of the functions y(x) and z(x). Since, by virtue of Liouville’s formula, the
Wronskian does not depend on x, we can write

∆(λ) = V (ϕ). (13)

By using the representation of the function y(x, λ) for ϕ(x, λ) and ψ(x, λ),
we have

ϕ(x, λ) = ϕ0(x, λ) +
1

ρ

∫ x−h

−x+h

N(x, s)cosρ(s− h)ds, (14)

ψ(x, λ) = ψ0(x, λ) +

∫ H−x

−H+x

P (x, s)sinρ(H − h− s)ds, (15)

where N(x, t) and P (x, t) are real continuous functions. Thus for sufficiently
large ρ, we have

ϕ(x, λ) = cosρ(x− h) +O

(
1

ρ
exp(|Imρ|(x− h))

)
, (16)

ψ(x, λ) = sinρ(H − h− x) +O

(
1

ρ
exp(|Imρ|(H − h− x))

)
.

(17)

Now, by taking (2), (13) and (16), the characteristic function for the BVP(L)
can be written as

∆(ρ) = ∆0(ρ) +
1

ρ

∫ H−h

−H+h

N(H, s)cosρ(s− h)ds. (18)

Therefore

∆(ρ) = ∆0(ρ) +O

(
1

ρ
exp(|Imρ|(H − h))

)
, (19)

where ∆0(ρ) = cosρ(H − h) is a characteristic function for the BVP(L0).

Theorem 2. The eigenvalues of the BVP(L) satisfy the asymptotic equality

ρn = ρ0
n +O (1) , (20)
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for sufficiently large n. Here ρ0
n is the zeros of the function ∆0(ρ) and is equal

to ρ0
n = (2n+1)π

2(H−h) .

Proof. Denote Gn = {ρ; |ρ| = (2n+1)π
2(H−h) + 1

2 , n = 0,±1,±2, ...}.

By taking (18), we can write for a positive constant C,

|∆(ρ)−∆0(ρ)| ≤ C

ρ
exp(|Imρ|(H − h)), ρ ∈ Gn

(see Marchenko (1986)). Thus

∆(ρ) = ∆0(ρ) + g(ρ), g(ρ) ≤ C

ρ
exp(|Imρ|(H − h)).

Since |∆0(ρ)| > Cexp(|Imρ|(H − h)) (see Neamaty and Khalili (2013)),
we arrive at |∆0(ρ)| > |g(ρ)| for sufficiently large n. Then according to the
Rouche’s theorem (see Conway (1995)), the number of zeros of the function
∆(ρ) and ∆0(ρ) is same. Now we can write for sufficiently large n, ρn = ρ0

n+εn
wherein ρ0

n is the zeros of the function ∆0(ρ). It is trivial that ρ0
n = (2n+1)π

2(H−h) .
Also it follows from (18) that

∆(ρn) = ∆0(ρ0
n + εn) +

1

ρn

∫ H−h

−H+h

N(H, s)cosρn(s− h)ds.

Here ∆0(ρ0
n + εn) = ∆0(ρ0

n) + ∆̇0(ρ0
n)εn where ∆̇ = d∆(ρ)

2ρdρ . Therefore

εn =
1

∆̇0(ρ0
n)

(
−1

ρ0
n

∫ H−h

−H+h

N(H, s)cosρ0
n(s− h)ds

+O(exp(|Imρ|(H − h)))

)
.

Since the function ∆̇0(ρ) is type of "cos", we can obtain εn = O (1). So the
formula (20) is valid. Theorem 2 is proved.

Now, in this part, we introduce the Weyl solution and the Weyl function for
the BVP(L). At first, we assume that C(x, λ) be a solution of Eq. (3) under
the initial conditions C(h, λ) = 0 and (ΓC)(h, λ) = 1.
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We assume that φ(x, λ) be a solution of Eq. (3) considering U(φ) = 1 and
V (φ) = 0. Denote

φ(x, λ) =
ψ(x, λ)

∆1(λ)
, (21)

where ∆1(ρ) = ρ2∆(λ). We set M(λ) := φ(h, λ). The functions φ(x, λ) and
M(λ) are called the Weyl solution and the Weyl function for the BVP(L),
respectively. It is obvious that

< φ(x, λ), ϕ(x, λ) >= −1, (22)
φ(x, λ) = C(x, λ) +M(λ)ϕ(x, λ). (23)

We use the notation

αn :=

∫ H

h

ϕ2(x, ρn)dx. (24)

The numbers αn are called the weight numbers, and the data S := {ρn, αn}
are called the spectral data of L.

Theorem 3. The weight numbers of the BVP(L) have the following asymp-
totic behavior for sufficiently large n

αn = α0
n +

κn
n
, {κn} ∈ `2, (25)

wherein α0
n is the weight number of L0 and is equal to α0

n = 1
2 (H − h).

Proof. By taking (18), we have

∆̇(ρ) = ∆̇0(ρ)− 1

ρ

∫ H−h

−H+h

(s− h)N(H, s)sinρ(s− h)ds

− 1

ρ2

∫ H−h

−H+h

N(H, s)cosρ(s− h)ds. (26)

On the other hand, we know that for a sequence {βn},

αnβn = −∆̇(ρn), βn 6= 0 (27)

(see Freiling and Yurko (2001)).
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Since ∆̇0(ρ0
n + εn) = ∆̇0(ρ0

n) + ∆̈0(ρ0
n)εn, by using (26) and (27), we infer

that

αnβn = α0
nβ

0
n − ∆̈0(ρ0

n)εn

+
1

ρn

∫ H−h

−H+h

(s− h)N(H, s)sinρn(s− h)ds

+
1

ρ2
n

∫ H−h

−H+h

N(H, s)cosρn(s− h)ds,

and consequently αn = α0
n + κn

n , where

κn = −n(H − h)2cos
(2n+ 1)π

2
O(1)

+
2(H − h)

π
O(1)

∫ H−h

−H+h

(s− h)N(H, s)sinρn(s− h)ds

+
2(H − h)

(2n+ 1)π
O(1)

∫ H−h

−H+h

N(H, s)cosρn(s− h)ds.

The proof is completed.

Inverse Problem 1. Given the Weyl function M(ρ), construct the potential
q(x) and the coefficient β.

3. The Uniqueness Theorem

This section contains the main theorem which clarifies the aim of this paper.
For this reason together with L = L(q(x), β), we can also consider a boundary
value problem L̃ = L(q̃(x), β̃). If a certain symbol e denotes an object related
to L, then the corresponding symbol ẽ with tilde denotes the analogous object
related to L̃, and ê := e− ẽ.

Theorem 4. If M(ρ) = M̃(ρ) then q(x) = q̃(x) and β = β̃. Thus the specifi-
cation of the Weyl function uniquely determines the BVP(L).

Proof. We consider the matrix P (x, ρ) = (Pj,k(x, ρ))j,k=1,2 by the formula

P (x, ρ)

(
ϕ̃1(x, ρ) φ̃1(x, ρ)

ϕ̃2(x, ρ) φ̃2(x, ρ)

)
=

(
ϕ1(x, ρ) φ1(x, ρ)

ϕ2(x, ρ) φ2(x, ρ)

)
· (28)
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So 
ϕ1(x, ρ) = P11(x, ρ)ϕ̃1(x, ρ) + P12(x, ρ)ϕ̃2(x, ρ),

φ1(x, ρ) = P11(x, ρ)φ̃1(x, ρ) + P12(x, ρ)φ̃2(x, ρ).

(29)

and by virtue of (22), we have
P11(x, ρ) = ϕ1(x, ρ)φ̃2(x, ρ)− φ1(x, ρ)ϕ̃2(x, ρ),

P12(x, ρ) = φ1(x, ρ)ϕ̃
1
(x, ρ)− ϕ1(x, ρ)φ̃1(x, ρ).

(30)

Using (23) and (30), we calculate

P11(x, ρ) = ϕ1(x, ρ)C̃2(x, ρ)− C1(x, ρ)ϕ̃2(x, ρ)

+M̂(ρ)ϕ1(x, ρ)ϕ̃2(x, ρ),

P12(x, ρ) = C1(x, ρ)ϕ̃1(x, ρ)− ϕ1(x, ρ)C̃1(x, ρ)

−M̂(ρ)ϕ1(x, ρ)ϕ̃1(x, ρ).

On the other hand, from the hypothesis M(ρ) = M̃(ρ), we get
P11(x, ρ) = ϕ1(x, ρ)C̃2(x, ρ)− C1(x, ρ)ϕ̃2(x, ρ),

P12(x, ρ) = C1(x, ρ)ϕ̃1(x, ρ)− ϕ1(x, ρ)C̃1(x, ρ),

and consequently P1k(x, ρ), k = 1, 2 are entire in ρ for each fixed x. It follows
from (21) and (30) that

P11(x, ρ) = 1 + (ϕ1(x, ρ)− ϕ̃1(x, ρ)) ψ̃2(x,ρ)

∆̃1(ρ)

−
(
ψ1(x,ρ)
∆1(ρ) −

ψ̃1(x,ρ)

∆̃1(ρ)

)
ϕ̃2(x, ρ),

P12(x, ρ) =
(
ψ1(x,ρ)
∆1(ρ) −

ψ̃1(x,ρ)

∆̃1(ρ)

)
ϕ1(x, ρ)

− (ϕ1(x, ρ)− ϕ̃1(x, ρ))
ψ

1
(x,ρ)

∆1(ρ) .

(31)

Let Gδ = {ρ; |ρ− ρn| ≥ δ, n = 0,±1,±2, ...} where δ is a sufficiently small
number. Similar to those presented in Neamaty and Khalili (2013), it follows
from (16), (17) and (19) that for v = 0, 1,

|ϕ(v)(x, ρ)| ≤ C|ρ|vexp(|Imρ|(x− h)), (32)
|∆(ρ)| ≥ Cδexp(|Imρ|(H − h)), ρ ∈ Gδ, (33)
|ψ(v)(x, ρ)| ≤ C|ρ|vexp(|Imρ|(H − h− x)). (34)
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Taking (21), (33) and (34), we have for ρ ∈ Gδ,

|φ(v)(x, ρ)| ≤ Cδ|ρ|v−2exp(−|Imρ|x). (35)

Denote G0
δ = Gδ ∩ G̃δ. By virtue of (32) and (35), we get as ρ ∈ G0

δ , and
sufficiently large ρ

(ϕ1(x, ρ)− ϕ̃1(x, ρ))
ψ̃2(x, ρ)

∆̃1(ρ)
' 0,(

ψ1(x, ρ)

∆1(ρ)
− ψ̃1(x, ρ)

∆̃1(ρ)

)
ϕ̃2(x, ρ) ' 0,

(
ψ1(x, ρ)

∆1(ρ)
− ψ̃1(x, ρ)

∆̃1(ρ)

)
ϕ1(x, ρ) ' 0,

(ϕ1(x, ρ)− ϕ̃1(x, ρ))
ψ

1
(x, ρ)

∆1(ρ)
' 0.

Therefore by using (31), we infer P11(x, ρ) = 1 and P12(x, ρ) = 0. Now together
with (29), this yields ϕ̃(x, ρ) = ϕ(x, ρ) and φ̃(x, ρ) = φ(x, ρ) for all x, ρ. Thus
q(x) = q̃(x) for all x and β = β̃. Theorem 4 is proved.

Corollary 1. If ρn = ρ̃n and αn = α̃n then L = L̃. Thus, the specification of
the spectral data {ρn, αn} uniquely determines the BVP(L).

Proof. See Theorem 4 in Topsakal and Amirov (2010).

4. An Example

Now in this section we will give an application of a singular Sturm-Liouville
equation in applied problems. In the sequel the approximate solution is ob-
tained by using the variational iteration method (VIM). The computations of
this problem have been performed on a PC taking some programs written in
Mathematica.

Example 1. The problem of the seismic response of earth dams is a boundary
value problem wherein we can survey a displacement of dams in the case that
a special stress is exerted to those (see Neamaty and Khalili (2014)).

The partial differential equation for this problem with the stress τyx(x; t) =
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G
(
∂u
∂x + u

x−H

)
can be written in the following form

1

x

∂

∂x

(
x

(
∂u

∂x
+

u

x−H

))
= C2

b

∂2u

∂t2
,

where ρs/Gb = C2
b for the average shear modulus of the soil G = Gb, and

the mass density of the soil ρs. Then this equation reduces to the singular
Sturm-Liouville equation in the form

− y′′ + q0(x)

(x−H)2
y = λy, h < x < H, (36)

where q0(x) = 4Hx−H2

4x2 . We can rewrite the equation as

− y′′ +
( 3

4

(x−H)2
+

−1
2H

x−H
+ q(x)

)
y = λy, h < x < H,

(37)

where h, H are positive real numbers and q(x) ∈ L2(h,H).

Considering the following boundary conditions

U(y) := y′(h)− βy(h) = 0, V (y) := y(H) = 0, (38)

we have a boundary value problem for a such applied problem. Now for solving
the problem (36) and (38) by the VIM, we reduce it to the form

− y′′ + ν

(x−H)2
y = λy, h ≤ x < H, (39)

for a real parameter ν. In the case ν = 0, this equation has the solution

y0(x) =

√
λcos
√
λh− βsin

√
λh√

λ
cos
√
λx

+
βcos

√
λh+

√
λsin
√
λh√

λ
sin
√
λx,

with initial conditions y(h) = 1 and y′(h) = β. To find the approximate
solution by using the VIM, we have the following correction functional

yn+1 (x) = yn (x)

+

∫ x

h

µ

{
d2yn (s)

ds2
− ν

(s−H)2
ỹn (s) + λyn (s)

}
ds, (40)
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where ỹn is considered as a restricted variation. In the following, by making
the functional stationary

δyn+1 (x) = (1− µ′(x))δyn (x) + µ(x)δy′n(x)

+

∫ x

h

{
d2µ(s)

ds2
+ λµ(s)

}
δyn (s) ds,

we have the stationary conditions

d2µ(s)

ds2
+ λµ(s) = 0, µ(x) = 0, µ′(x) = 1.

We give the Lagrange multiplier µ = 1√
λ

sin
(√

λ(x− s)
)
. So we take the

iteration formula

yn+1 (x) = yn (x) +

∫ x

h

1√
λ

sin
(√

λ(x− s)
)

×
{
y′′n (s)− ν

(s−H)2
yn (s) + λyn (s)

}
ds. (41)

Let us start with an initial approximation y0(x). Substituting y0 in (41),
we have

y1 (x) =

√
λcos
√
λh− βsin

√
λh√

λ
cos
√
λx

+
βcos

√
λh+

√
λsin
√
λh√

λ
sin
√
λx

−
∫ x

h

ν sin
(√

λ(x− s)
)

√
λ(s−H)2

×
{√λcos√λh− βsin√λh√

λ
cos
√
λs

+
βcos

√
λh+

√
λsin
√
λh√

λ
sin
√
λs
}
ds.
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By taking Mathematica, we can obtain the following approximate solution

y(x) ≈ y1(x) =

√
λcos
√
λh− βsin

√
λh√

λ
cos
√
λx

+
βcos

√
λh+

√
λsin
√
λh√

λ
sin
√
λx

+
ν(
√
λcos
√
λh− βsin

√
λh)

2λ(h−H)

×
(
sin
√
λ(2h− x)− sin

√
λx

−2
√
λ(h−H)Ci(2

√
λ(h−H))cos

√
λ(2H − x)

+2
√
λ(h−H)Ci(−2

√
λ(H − x))cos

√
λ(2H − x)

−2
√
λhSi(2

√
λ(−h+H))sin

√
λ(2H − x)

+2
√
λHSi(2

√
λ(−h+H))sin

√
λ(2H − x)

+2
√
λhSi(2

√
λ(H − x))sin

√
λ(2H − x)

−2
√
λHSi(2

√
λ(H − x))sin

√
λ(2H − x)

)
+
ν(βcos

√
λh+

√
λsin
√
λh)

2λ(h−H)

×
(
− cos

√
λ(2h− x) + cos

√
λx

−2
√
λ(h−H)Ci(2

√
λ(h−H))sin

√
λ(2H − x)

+2
√
λ(h−H)Ci(−2

√
λ(H − x))sin

√
λ(2H − x)

+2
√
λhSi(2

√
λ(−h+H))cos

√
λ(2H − x)

−2
√
λHSi(2

√
λ(−h+H))cos

√
λ(2H − x)

−2
√
λhSi(2

√
λ(H − x))cos

√
λ(2H − x)

+2
√
λHSi(2

√
λ(H − x))cos

√
λ(2H − x)

)
.

The approximate solution is shown in Table 1 and Figure 1 for h = 10,
H = 100, λ = 4, β = 5 and ν = 1.
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Table 1: The Approximate Solution using λ = 4

x y(x)

10 1
10.1 1.040940331
10.2 1.039023678
10.3 0.9611099142
10.4 0.8751318014
10.5 0.750000000
10.6 0.600000000
10.7 0.4206852847

Figure 1: The approximate solution using λ = 4.
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